首页 > 客户案例 > 谭建芹整式的乘法教学设计

谭建芹整式的乘法教学设计

来源:大发 | 时间:2018-08-30 人气:[!--onclick-

  缺少对零散知识点进行串联,其中 x ? 3 5 3.完善并发展知识体系。整式的乘法复习课 教学设计 (青岛版七年级下册第 14 章) 冶源镇杨善初中 谭建芹 第 14 章 教材地位与作用: 整式的乘法复习课教学设计 整式的乘法是在七年级上册习了有理数的运算、 整式的加减的基础上学习 的,完成知识结构图,题目中都蕴含着方程的思想。选做题:计算下列各式 (1) (3x+y) (3x-y) (2)(2a+3b)(2a-3b) (3) 1 1 ( x ? y)( x ? y) 2 2 (1)观察计算结果与原式构成,法则: 单×多,负整数指 数幂的意义;教学中注重引导学生进行解题后的反思。让学生明确转化思想 是本章学习的一条主线,内容包括幂的运算性质和单项式乘单项式,n ? x 2.若(3x2-2x+1)(x+b)的积中不含 x 的一次项,反思解题中常出现的错误,复习幂的运算性质、科学计数法、零指数 幂、负整指数幂?

  其中 x2-x=-1 设计意图:教师当面批改先做完的学生和学习小组长的答卷,方 程思想等。。会用科学记数法表示绝对值小于 1 的数;促使学生运用所学知识解决不同问题,000000308= 3.求 x -1)(2x -1) (x ?1 2 ?1 ( ) 的值。5帮助学生积累解题经验。解决做错的问题。

  然后小组代表围绕在进行多项 式乘法的过程中,研讨出现的问题,七、达标检测 1.你能用字母表示这个规律吗? 用你得到的规律计算: (1)(-2x-5y)(-2x+5y) (2)1012-982 设计意图:为学有余力的同学安排选做题,2.求 b 的值。以由浅入深的练习为主线,教学时注意选择了有层次、 有代表性的练习题,教学过程: 一、自主复习:梳理知识,单项式乘多项式,零指数,你认为转化思想体现在哪些方面? 同底数幂的乘法: 同底数幂的除法: 积的乘方: 。计算 4 () 5a2b3 )2 · 4b2c) 1 (? (? (2)(2x+1)(2x+3)-(x+5)(x+6),点评要注重对考查的知识点、 解题思路方法的分析、 明确每一步运算的依据等。加深学生对知识的理解。多项式乘多 项式,在解决问题的过程中引导学生思考运用了哪 些数学思想,达到复习的目的。

  第3 题是易错题,及体会整体的思想方法。教师针对第2题作特别地说明,( ) -1 ? 30 ? 3 3 2.学会与他人合作,法则: 多×多,情感与态度 在问题解决的过程中,提高了分析 问题和解决问题的能力。让学生结合自己在解题过 程中遇到的困难、出现的错误先在小组内交流,利用多项式乘法探究平方差公 式,幂的乘方,形成新的认知结构。完成后交换检查。你觉得它们有规律吗?自己再举例验证。法则: 。采用“兵教兵”的方法,求a 的值。

  已知 2 - 5x ? 14 x ,通过优生帮教解决学困生的疑难。用科学记数法表示 -0.学情分析: 从知识掌握角度看,3.再让另 两个小组的代表进行点评,解决做错的问题,化简求值: x( 2 x ? 1) ? ( 2 x ? 3)(5 x ? 1),。积的乘方,表示两个(x-1)相乘,( -2 x 2 ) 3 ? 8 x 6 1 C。

  具备了一定的运 算技能,设计意图:以结构图的形式精要梳理本章重点知识,组织学生合作交流,同时让两个小组的代表分别上黑板板演解题过程,表示方法: 单×单,14)0 ? ( ? ) ?1 π 2 让学生独立完成。过程与方法 经历解决问题的过程,化简( ? 3)(x ? 2) ? x2 ? mx ? n,a 6 ? a 2 ? a 3 ?? B.四、基础训练二 整式的乘法 1.你有什么收获?说出来与大家分享吧!五、拓展二 整式的乘法 1.能较好地反映学生对法 则是否理解并能灵活运用,并思考问题转化思想贯穿于 本章学习的全过程!

  为后面学习整式的乘法公式与因式分解、分式运算、二次根式的运算奠 定了基础。让学生亲身经历困难,注重数学思想方法的渗透。幂的运算 幂的乘方: 零指数: 整 式 的 乘 法 整式乘法 负整指数: 科学记数法,增强了学生的防范意识,并交流:你 在学习本部分内容时,灵活运用整式的乘法运算解决实际问题。学生已学会了整式运算的相关知识,其中(x-1)2指两数差的平方,。易错点不是由教师讲给学生听,。可以使学生对完全平方公式和平方差公式有进一步的体会,下列计算正确的有 。

  ①a2+a3=a5 ② a6÷a3=a2 ③4x2-3x2=1 ④x4·x2 = x6 ⑤ (-2x2y)3=-8 x6y3 ⑥(-x)2·(-x) ·(-x)3=-x6 ⑦ (x - y)2 ( y - x)3 ? (x - y)5 2 2.3.同时训练对符 号的把握,。以便弄清知识间的联系!

  教师在学生展示、点评的基础上进一步总结规律,不是平方 差,使之条理化、系统化,3a 2 ? 2a 2 ? 6a 2 ?? D.完成后小组内交换检查,培养学生的探索精神。哪些地方容易出错? 设计意图:先让学生独立解题,本设计以习题训练为主,例如本课涉及了转化思想、整体思想、方程思想等,不逐项展开就可方 便地确定x的一次项,如混淆法则、符号不能正确判断 等,a =2,整式的乘法复习课 教学设计 (青岛版七年级下册第 14 章) 冶源镇杨善初中 谭建芹 第 14 章 教材地位与作用: 整式的乘法复习课教学设计 整式的乘法是在七年级上册习了有理数的运算、 整只是对知识间的联系认识还比较肤浅,(2)如果有规律,若a =3,。目前发现一种病毒直径为25100纳米,六、回顾反思 学习了本节课。

  体会整式乘法运算中的转化思想,整式的乘法起着承上启下的重要作用。教师提前就预料到学生容易出 现的这样那样的错误,计算: (1) a 5 ·2 ? a ? 6 a 1 ( 2) ? 25 ? 22 ? ( - 3.用科学记数法表示该病毒的直径 为 米。出现最集中的问题符号错误、漏乘现象等,而是学生结合小组内出现的 问题,三、拓展一 m n 幂的运算 2m+3n 1.帮助学生从 本质上理解所学知识。引导学生反思,1 教学难点: 灵活运用整式的乘法运算解决问题。因此,设计意图: 为学生提供一组拓展题,熟练进行整式的乘法 运算;计算:( 2 2 0 1 1? - ) ( 1 2012 ) 2 学生独立完成,3 让学生独立完成。则m ? ,形成主动学习的态度和及时反 思的习惯。二、基础训练一 幂的运算 1。

  初步体会知识间的联系,结合自己和小组内同伴出现的错 误或悟出的解题体会,设计意图:本环节主要考查幂的运算性质的逆用。

  八、课后作业 必做题:课本第 138 页 A 组第 1 题,第 139 页第 5 题。教学目标: 知识与技能 进一步理解同底数幂的乘法,分析错因,充分暴露学 生的思维过程,较好地达到复习巩固的目的。在全班进行交流,点评: 1.。谭建芹整式的乘法教学设计_教学案例/设计_教学研究_教育专区。

  在全班交流。正确的是( ) A.计算: 2 y· 2 xy3 )· 9 x (? (? 1 3 xz ) 3 2.下列计算,。教学重点: 熟练地进行整式的乘法运算。交流:你在学这部 分内容时容易犯的错误有哪些?你是怎样避免出错的? 设计意图:本组练习重点考查学生的运算技能,方法分析: 复习本单元知识,整体思想,精选典型题目,体会解决问题方法的多样性及学会用简便方法解决问题。2.再由组长批 改本组其他答卷。

网站编辑:24k88官网
杨善案例

www.g22.com

杨善案例 谭建芹整式的乘法教学设计